The generator matrix

 1  0  1  1  1  0  1 X^2+X  1  1 X^2+X  1  1 X^2  1  1  1 X^2  X  1  X  1  X  1  1  1  X  1  1  0  1  X  1  0  1  1  1  1  0 X^2 X^2  1  1 X^2  1  X  1  1  1 X^2  1
 0  1  1  0 X^2+X+1  1  X  1 X^2+X+1  X  1  1 X^2  1 X+1  0 X^2+X+1  1  1 X^2+X  1 X^2+1  1  X X^2+X+1  1  1  1 X^2+X+1  1 X^2+X+1  1 X^2  1 X^2+1  0 X^2+X X+1 X^2  1  1 X+1  0  1 X+1  X X^2+1  0  X  X X^2+X+1
 0  0  X  0 X^2+X  X  0  X  0  X X^2  0  X  0 X^2 X^2+X  X  X X^2+X X^2  0 X^2+X  0  X X^2 X^2 X^2+X  X X^2 X^2  0  X X^2  X  0 X^2  0 X^2  X  X X^2 X^2+X X^2 X^2+X X^2+X X^2+X X^2+X X^2+X X^2 X^2+X  X
 0  0  0  X  0  X  X  X X^2+X  0 X^2 X^2+X X^2  X X^2  X X^2+X X^2 X^2  0 X^2+X X^2+X X^2 X^2+X X^2+X X^2  0  X X^2+X X^2+X  0 X^2  X  X  X X^2 X^2  0 X^2+X  0 X^2  X  0  X X^2 X^2 X^2 X^2+X  X  0  0
 0  0  0  0 X^2 X^2 X^2  0 X^2 X^2 X^2  0  0  0  0  0  0  0 X^2 X^2 X^2  0  0 X^2 X^2  0 X^2 X^2  0 X^2 X^2  0 X^2  0 X^2 X^2  0  0 X^2 X^2 X^2 X^2 X^2 X^2 X^2 X^2  0 X^2  0 X^2 X^2

generates a code of length 51 over Z2[X]/(X^3) who�s minimum homogenous weight is 46.

Homogenous weight enumerator: w(x)=1x^0+244x^46+408x^48+448x^50+391x^52+282x^54+174x^56+66x^58+16x^60+10x^62+1x^64+6x^66+1x^68

The gray image is a linear code over GF(2) with n=204, k=11 and d=92.
This code was found by Heurico 1.16 in 0.318 seconds.